
DRAFT 1

Account Allocations on the Grid

Thomas J. Hacker Brian D. Athey
Center for Parallel Computing Cell & Developmental Biology
University of Michigan University of Michigan

Email: {hacker,bleu}@umich.edu

Abstract

The Grid infrastructure provides access for a
large pool of users to a large number of
distributed computing resources. Providing
access for the complete pool of potential users
would put an unacceptably large administrative
burden on sites that participate in the Grid.
Current approaches to solve this problem
require an account for each user at a site, or
maps all users into one account. This paper
proposes an alternative approach to account
allocation that provides the benefits of persistent
accounts while minimizing the administrative
burden on Grid resource providers. A technique
for calculating the upper bound on the number of
jobs and users offered to the system from the
Grid that is based on historical use is presented.
Finally, application of this approach to the
National Institutes of Health Visible Human
Project is described.

1 Introduction and Motivation

When the Grid computing environment [29]
becomes fully operational, potentially tens of
thousands of users will be actively using
resources made available to them by Grid
resource providers. To access these resources,
each of these users will require some form of a
local account. However, requiring each
participating site on the Grid to accurately
maintain tens of thousands of accounts is neither
desirable, nor feasible.

Many sites will likely have a finite set of users
that regularly visit the site for resources. If a
Grid user utilizes resources at a site infrequently,
or only once, the overhead associated with
creating, maintaining and deleting an account for
the infrequent user would quickly overwhelm
systems staff and provide a strong disincentive
for resource sites to participate in the Grid.

To address this problem, a mechanism for
provisioning “template” accounts for Grid users

in a local environment is proposed, that provides
a mechanism for local resource administrators to
provide relatively instantaneous access to local
resources, persistence for frequent users, and
enables close tracking and accounting of Grid
user resource utilization. To predict an upper
bound on the number of individual jobs and
unique users that will utilize the system, a
technique based on historical job logs is
presented in the last section of this paper.

The proposed mechanism replaces the
fundamental systems paradigm of a strong
binding between a real user and an account on a
system with the paradigm of a temporary binding
between an account and a real user.
Authentication and authorization that
traditionally has been performed on the local
system is replaced with distributed
authentication and authorization systems, such as
Kerberos [5], X.509[6], and Akenti [2]. To
enforce user accountability, local record keeping
can be used to track the actions and resource
utilization of users.

The impetus for this mechanism is expressed in
the Grid Forum draft Security Implications of
Typical Grid Computing Scenarios[1]: “For
each resource that requires local user ids, the
Grid system administrator on the resource must
determine the mapping of Grid ID…to local user
ID…into a Grid-specific mechanism…” The
need for a simple and fast administration is
expressed in [34].

Two large Grid projects under development will
directly benefit from the account template
mechanism described in this paper. One project
is the system at Pacific Northwest National
Laboratories [39] that is focused on real-time
dynamic allocation and accounting mechanisms
for computational resources.
The other large Grid project that will benefit is
the Information Power Grid at NASA [30],
which is attempting to build a production
network of high performance computing
resources and data storage devices.

DRAFT 2

2 Current Situation and Related Work

The problem of maintaining accounts across a
large number of hosts in a local administrative
domain has been addressed over the years with a
number of solutions. Project Athena at MIT
solved the problem in the UNIX workstation
space by using Kerberos for verifying user
identity, and Hesiod [4] for maintaining
password files across a large number of
workstations. This central control mechanism
worked well for a small class of hosts (UNIX
workstations) in a well-defined administrative
domain.

As the class of desktop hosts that required
centralized authentication and authorization
mechanisms increased, attempts were made to
extend existing solutions to cover the new
systems. Kerberos authentication was added to
Apple Macintosh [13] and Microsoft Windows
platforms [14]. Other authentication and
authorization systems were created that
addressed the problem well in one host class, but
poorly in others. For example, Novell addressed
the problems in the Microsoft Windows space
very well, but only marginally supported UNIX
workstation hosts.

Carnegie Mellon University’s Andrew Project
[15] created a wide area filesystem primarily
targeted to UNIX workstation class hosts. For
authentication, the Andrew project adopted MIT
Kerberos for local domain (cell) authentication,
but never fully addressed the problems of cross-
domain authentication. The authorization
mechanisms in Andrew were designed to control
file access, and were also centered on the local
administrative domain.

The Distributed File System (DFS) [16] created
a centralized authorization and authentication
mechanism (the Registry) that attempted to
address the local and cross-domain
authentication and authorization issues. In
practice, however, the effort required to maintain
a large central repository of information became
overwhelming, and the performance of the
registry was poor [17].

Web based backup, collaboration and virtual
office services, such as Egroups.com, and web
based collaboration and file storage systems have
emerged in the last few years that utilize X.509

based authentication to provide higher level
distributed services.

Several attempts are now being made in the Gird
computing milieu to address the cross-domain
authentication and authorization problems.
Globus [18] is utilizing X.509 based
authentication mechanisms to successfully
deploy a computational job across a set of
supercomputer systems. Grid resource provider
sites maintain a file that maps from X.509
distinguished names (DNs) into a local account
identifier that was created for the individual user.

All of the systems described work well in finite
local domains, or when the number of users is
finite and less then a few thousand. However,
when attempts are made to utilize resources
across administrative domains or when the
number of users exceeds 100,000, the solutions
fail to scale elegantly.

Other Account Allocation Approaches
Condor solves this problem by using one UID
(“nobody”) to execute jobs for users that do not
have an account in a Condor flock [10]. The
PUNCH system uses a similar scheme, where all
users are represented by logical user accounts
within a single physical account [11, 12] with the
ability to use a set of dynamic account bindings
for system calls.

There are disadvantages to these approaches. If
there are multiple jobs on the same system from
different users, with all of the users assigned to
one UID, it is difficult for the system to
distinguish between those users since they all
share the same UID. An example of this problem
with identity is if a common scratch disk space is
made available to users, there is no effective way
for the system to prevent multiple users sharing
the same UID from possibly interfering with
each other in the scratch space. Another
disadvantage is the lack of effective
accountability. If a user identified with a shared
UID misbehaves, it is difficult for the system and
site administrator to determine which user is
causing the problem, and it is even more difficult
to affix blame if the misbehavior is felonious.
Finally, with one UID for a set of users, there is
no possibility of real persistence for the user on
the system. Several mechanisms in UNIX such
as message queues and shared memory that
provide for persistence across process lifetime
will not function well with a shared UID.

DRAFT 3

The scheme described in this paper is
fundamentally different than the PUNCH
approach in that it creates a one to one account
binding between a user and an account that is
identical (as far as the local binding pool is
concerned) to a normal local account. There are
several advantages to this scheme over the single
UID approach. First, this solution is a
compromise between requiring one firmly bound
account for every user that may use the system
(essentially providing a 100% grade of service)
versus provisioning only one UID for all users.
Additionally, account templates provides a form
of persistence to frequent users, but also permits
new users to use the system without excessive
administrative overhead to manage accounts for
new or infrequent users. This approach also
allows site administrators to predict and
minimize the effects of Grid usage on systems
they administer. Thus, the account template
approach described in this paper provides a
measured form of persistence, identity, and
accountability.

The National Partnership for Advanced
Computational Infrastructure (NPACI) and the
PACI issues individual accounts for every user
that is granted an allocation on a host at an
NPACI site. The NPACI account creation
process uses a database as a centralized
repository of users and automating the account
creation process using daemons [35].

Globus and PACI issues an X.509 certificate for
every user, but a static mapping to a local
account using a globusmap file is required at the
local host to allows a user to run a job at the site.

3 Account Templates
Using account templates for allocation attempts
to take advantage of the potential “locality” of
the Grid user’s utilization pattern to support
hundreds of thousands of Grid users and at the
same time provide site administrators an
analytical tool for designing and provisioning
their systems to limit and meter utilization of
their systems by users from the Grid.

The basic idea is to create a pool of “template”
accounts that have no permanent association (or
“binding”) with a user, and to create temporary
persistent bindings between template accounts
and Grid users. Each template account uses the
regular account attributes that are normal for the
host system, but the user information refers to a
pseudo user, not a real user. For example, for a

UNIX host the template account may have the
following password file entry:

pseudo1:*:12345:23:Psedononymous
User 1:/home/pseudo1:/bin/csh

Note that the account has no password – users
will be permitted to directly login to the account
using an X.509 based ssh [36], and a root level
process will be enabled to create a process in the
user space of the pseudo user on behalf of a real
Grid user after authentication.

Most systems today operate on the implicit
assumption that account bindings are permanent.
User information, such as the user’s real name
(GECOS field), home directory, program
initialization files (such as .cshrc) are assumed to
preexist on the system. For temporary bindings
to integrate well with the existing systems,
information about the real user’s identity needs
to be made available to the process and to the
system.

3.2 Binding Pools
To address the integration issue with existing
systems, there must be some form of
administrative domain. A set of 1:1 bindings that
associates Grid users to template accounts
represents a binding pool. A set of hosts would
subscribe to one and only one binding pool. For
example, a Linux cluster consisting of 64 hosts
would subscribe to one binding pool, which may
also be subscribed to by any other collection of
hosts. The relationship between hosts and
binding pools is shown in Figure 1.

Host 1

Host 2

Host 3

NFS

Host 4

Host 6

Host 5
Host 7

Binding Pool 1

Binding Pool 2

Account
Template
Set 1

Account
Template
Set 2

Figure 1: Binding Pools
The purpose of a binding pool is to facilitate use
of services on systems that were not designed to
operate with temporary account bindings. Local
services (such as NFS) that still rely on firm

DRAFT 4

account binding should only be used within the
scope of a binding pool. It may be the case that
user to account template assignments might be
identical across binding pools, but no
assumptions should be made about identical
assignments across binding pools, since the
binding pools are intentionally separate. Higher
level distributed services, such as file sharing
through AFS, that don’t rely on firm account
bindings, normally use higher level
authentication and authorization mechanisms
such as X.509, Kerberos and Akenti to map users
to individual account templates within a binding
pool domain. The temporary account binding
mechanism is natural given that modern
distributed systems are moving from reliance on
local bindings for authentication and
authorization to a greater reliance on global
binding and authorization mechanisms.

Account Template States
Firmly bound accounts exists in one of two
states: active/available, and unavailable. A firmly
bound account is active/available when the
account is available for a properly authenticated
and authorized use. The firmly bound account in
unavailable when the account is still on the
system, but has been disabled. Due to the more
complex nature of temporary account bindings,
additional states are necessary. Each template
account in a set of template accounts will be in
one of the following states:

• NEW – New local account that has never
had any Grid user association. This is
different from SCRATCH, which has had an
association with a Grid user.

• ACTIVE – Local account with an active,
running, online association to a Grid user

• QUIET – Local account with no active
online association to a Grid user

• UNAVAILABLE – Local account not
available for any associations to a Grid use

• SCRATCH – Persistent assignment of local
account to a Grid user has been broken.

• ERROR – An error has occurred in the
template, and the template is unavailable for
any user.

The following states are transition states between
the states described above:

ACTIVE_PENDING
QUIET_PENDING
SCRATCH_PENDING
UNAVAILABLE_PENDING

Valid state transitions for account template states
are shown in Figure 2.

NEW

ACTIVE_PENDING

ACTIVE

QUIET_PENDING

Transition to QUIET state is not
permitted until binding grace

period expires

QUIET

SCRATCH_PENDING

UNAVAILABLE_PENDING

UNAVAILABLE

SCRATCH

FROM ALL STATES ON
ERROR

ERROR

Figure 2: Account Template States

The typical process for assigning a user to an
account template from start to finish follows this
path is as follows:

1. A resource utilization request arrives in
the local domain from the Grid. A valid
resource request would include a valid
signed X.509 certificate.

2. A process in the local domain (such as
the Globus security) checks the X.509
certificate to validate the information
contained within it. Once the X.509
certificate has been validated, the user is
considered authenticated, but not
authorized. The X.509 certificate that is
transmitted with the utilization request
is retained to permit the security
gateway process to perform operations
on behalf of the user. This will enable
the delegation mechanism that is

DRAFT 5

described in Security Implications of
Typical Grid Computing Scenarios[1].

3. Next, the user resource request is
checked against the local authorization
mechanism (perhaps Akenti) to
determine if the user has sufficient
authorization to use the resources they
have requested. The Grid resource
provider that is considering whether to
provide access to the Grid user can
verify that the user is a member of a
class of users that is authorized to use
the resources, and the provider can
check the Grid user’s originating site to
verify that the user has sufficient Grid
“money” to pay for the resource use on
the local system.

4. At this point, the Grid user is
authenticated, and he is authorized to
use the resources requested. The next
major step is to create an association
between the user and a template
account.

5. First, it is determined if the user already
has an existing QUIET_PENDING
template account association. If the user
does, then that account template is
bound to the Grid account, and the new
state for the template is changed
through ACTIVE_PENDING to
ACTIVE.

6. If the user has no existing template
association, the pool of NEW accounts
is checked to see if there are any
available template accounts. If there
are, the new account template is bound
to the Grid user and the state of the
template is changed through
ACTIVE_PENDING to ACTIVE.

7. If there are no available NEW accounts,
the SCRATCH pool of accounts is
examined to determine if there are any
available template accounts. If there are,
the account is assigned to the user and
the state of the template is changed
through ACTIVE_PENDING to
ACTIVE.

8. If there are no open SCRATCH
accounts, then a QUIET account must
be utilized for a template account for
the grid user. A replacement policy
such as Least Recently Used may be
used to move the account from QUIET
through SCRATCH_PENDING to the
SCRATCH state, where it then may be
bound to the Grid user.

9. If there are no QUIET accounts
available, and if no QUIET_PENDING
grace period timers have expired, then
there are no available template accounts
that may be bound to the Grid user. An
error must be issued to the user and the
Grid request is unfulfilled. In practice,
this should be a rare occurrence, and the
administrators of the Grid resource site
must be notified. A Grid resource site
should not accept a job from the Grid if
it has no available template accounts to
bind to a Grid user.

10. Once the binding of a template account
to a Grid user is complete, the user’s
characteristics must be associated with
the account, in a fashion similar to
Microsoft Windows user profiles. [37]

11. Any registrations that should occur with
various Grid services and mechanisms
should occur at this point. One example
is registering with the Grid Information
Service (GIS) for sending and receiving
Grid events [3].

12. Binaries and datafiles for the user are
then copied into the local host filespace,
using access control and permission that
were mapped in to the binding pool
from the authorization, user credentials
and local permissions.

13. The process the Grid user requested is
then invoked.

14. Upon completion or termination of the
process, the output files are then sent
back to the user by some mechanism,
and the template moves from ACTIVE
through QUIET_PENDING and the
grace period timer is set.

15. The resource usage of the process is
recorded on the local system and
charged against the originating site of
the user from the Grid [20].

3 System Issues with Temporary Binding
The majority of systems have been designed
with the assumption that firm binding between a
user and an account is inviolate. When this
assumption is invalidated, several systems issues
must be addressed. These issues include
persistence, multi-site usage, accounting, and
usage metering. This section will examine these
issues.

4.1 Dealing with Persistence

DRAFT 6

On UNIX systems, artifacts may be left upon the
completion of a process. These artifacts
represent persistent state that the operating
system maintains on behalf of the user.
Examples of this include files held in the file
system, shared memory segments, semaphores
and message queues [19]. Any account template
solution that creates a temporary binding
between users and accounts must also have
mechanisms to manage these persistent objects.
Additionally, for account tracing purposes, meta-
account information about the real user’s identity
must be retained on the system.

If the system always broke the binding when
every job was completed, a lot of unnecessary
work would be performed by the system to
rebind recently bound accounts. Moreover, the
user would need to spend extra effort moving
persistent information in and out of the system
for every computation. To address these
problems, a “grace period” timer is utilized in the
state transition from QUIET_PENDING and
QUIET states. When a Grid process completes,
the binding is not considered breakable until the
grace period is expired. This gives the user some
guarantee of binding persistence, and allows
them to run several consecutive jobs using the
bound account template without worrying about
losing persistent information that is an artifact of
their computation. To allow the Grid resource
provider some policy control over this
persistence, site administrators must be able set
the value of this timer.

4.2 Multi-role Multi-site users

If a Grid user is authorized to use computer
resources at several sites on the Grid, then the
question arises about the appropriate “usage
role” or resource account the computation should
be charged against when consuming Grid
resources. If the user is consuming resources on
behalf of a project that is sponsored at a remote
site, then the user’s resource consumption should
be counted against that project. It would be
inappropriate for the Grid user to consume
resources from an accounting pool that benefits
another project. To allow a Grid user to
participate in several projects, a mechanism is
needed to link a “real” account at a site with an
indirect account reference. Figure 3 illustrates a
possible scenario:

“Real” account
on a Grid site

“Real” account
on a Grid site

Resource
Consumption

Account

Resource
Consumption

Account

Account
Template

Account
Template

Account
Template

Account
Template

Figure 3: Multi-User Multi-Account Scenario

The only access a user can have to Grid
resources is through the Resource Consumption
Account. This requirement enforces a complete
accounting of all Grid resource usage. Research
is currently underway [21, 39] to define the
mechanisms to successfully deal with this
situation.

4.3 Authorization and Usage Metering

UNIX based systems use a unique UID as the
basis for authorization, and as a key for storing
and retrieving resource usage information. With
the introduction of high level authorization
mechanisms, new extensions to UNIX will be
required to map artifacts such as X.509
certificates to the local version of authentication.
Host based accounting systems will also need to
be extended to store a Grid wide unique
identifier, such as an X.500 distinguished name
(DN) along with the usual accounting
information.

In practice, authentication and authorization on
hosts for users with template accounts will only
work if there is a production quality high level
authorization and authentication system in place
at the resource site. Providing access to local
systems to a pool of potentially hostile users
without a secure and trustworthy system in place
(such as Kerberos, X.509, and Akenti) to provide
site administrators control over who does what
on their systems is unwise. Akenti [2] is an
example of an X.509 based authorization system

DRAFT 7

that provides fine-grained access control to
resource and services.

Usage metering and accounting will still be done
locally on the basis of the template account UID,
but in terms of metering and accounting for
individual users, a global and local accounting
system based on X.500 DNs will need to be in
place. Work is under way in the Grid community
on these mechanisms [21, 20].

5 Determining the Peak Number of
Account Templates

For practical considerations, determining an
upper bound on the number of template accounts
required to satisfy a stream of utilization requests
for the Grid is very desirable. Maintaining an
arbitrarily large pool of template accounts to
satisfy 100% of offered utilization requests
would compel a Grid resource provider to incur a
large fixed overhead cost, since each template
account requires a certain amount of static
resources (such as disk space, UID/name space,
administrative effort, etc.). To calculate a
reasonable upper bound on the number of
template accounts necessary to satisfy a stream
of job requests, we can use the historical
resource utilization of the system as a guide for
prediction. Given the historical job arrival rate,
job time in the system, and probability of a user
arriving at the system based upon aggregate use,
it is possible to determine an upper bound on the
number of template accounts that will provide a
predictable grade of service (G.O.S.) to the
offered job stream.
Consider the following:

Week
1

Week
2

Week
c

N1

U1

S1

J1max

N2

U2

S2

J2max

Nc

Uc

Sc

Jcmax

. . .

Where Ni is the number of jobs successfully
executed during weeki, Ui is the complete list of
users (with repeats) that submitted a successful
job during the week, Si is the average time spent
in the system for all the jobs that ran that week.

During the time period of a week, there will be a
period during which the number of jobs in the
system will reach a maximum. This peak usage
is analogous to the “busy hour” in telephone
systems in which the maximum is the daily peak
reach in the number of outside telephone lines
used to service outgoing telephone calls in a
private telephone system [27]. Let the maximum
number of jobs in the system during the peak
period be represented by Jimax.

5.1 Characterizing the Job Stream

To model the characteristics of the offered job
stream, some underlying observations of the job
stream must be established. Jobs in the job
stream are initiated by user actions. Paxson [23]
determined that user initiated connections (such
as Telnet and FTP) demonstrate exponentially
distributed interarrivals and independent arrival
events, and could be successfully modeled with a
Poisson distribution. Since the job stream is also
user initiated, it would be reasonable to
hypothesize that the job stream could also be
modeled with a Poisson distribution. To verify
this hypothesis, the interarrival times between
requests in the job stream were analyzed. The
interarrival times demonstrated an exponential
distribution, and the submission of jobs was
assumed to be independent, since each represents
a unique job submission event by a user. Based
upon these characteristics, and examination of
the data, it was determined that the arrival rate of
the job stream follows a Poisson distribution.
The median of the arrival rate can be calculated
from the historical job information, or can be
estimated based upon some upper limit of
execution in the system, such as a queue time
limit.

For a given weeki, the distribution of arrival rates
into the system follows a Poisson distribution
with median λi. During the “busy period” of
peak utilization of the system, the arrival rate of
jobs is much higher than the median arrival rate
λi. Accurately characterizing the arrival rate
during the busy period is complex [27,28, 40],
but the arrival rate during the busy period can be
approximated by taking advantage of the fact
that the arrival rate follows a Poisson
distribution. If we use an approximation of the
median plus two standard deviations, we should
be able to generate a value for the arrival rate
that is larger than approximately 98% of the
values in the Poisson distribution. Thus, we
assume that

DRAFT 8

λimax =λi + 2s =λi + 2√ λi ≡ Ni + 2√Ni

where Ni is normalized to units of hours.
The time spent in the system for all jobs was
analyzed and determined to be exponentially
distributed (this will be useful later). The average
time in spent in the system Si is the arithmetic
mean of the time spent in the system for all the
jobs in weeki, and thus

1/µi = Si

5.2 Calculating the Peak Number of Jobs
Using Little’s Law, the number of simultaneous
active sessions during weeki is

Ei = λimax/µi

Where Ei represents the maximum number of
session active during the busy hour of the week.

The job stream offered to the system
demonstrates the following characteristics:
• There are (potentially) an infinite number of

sources
• Job requests arrive at random
• Job requests are serviced in order of arrival
• Refused requests are “lost”
• Time in the system is exponentially

distributed

Given that the system has these characteristics,
the Erlang-B distribution can be used to predict
the probability that an account binding request
will be blocked. Moreover, for a desired
blocking grade of service (GOS), the minimum
number of account templates required can easily
be calculated. [26, 27, 28]. The algorithm
developed by [26] can be used to calculate the
number of template accounts required to satisfy a
desired GOS given Ei.

The historical job logs the for the IBM SP-2
systems at the University of Michigan Center for
Parallel Computing and the Advanced
Computing Center for Engineering & Science
(ACCES) system at the University of Texas at
Austin were analyzed to measure the ability of
this method to successfully predict the maximum
number of account templates required to satisfy

an offered job stream. The University of
Michigan logs contain 7,294 jobs over a period
of 44 weeks. The University of Texas logs
contain 3,160 jobs over a period of 27 weeks.
Jobs that were in the system less than 10 minutes
were filtered out of the job stream, to remove
jobs that did not actually execute in the system.
From the logs, the average arrival rate for all of
the weeks was calculated:

U-M

λ = (Σcλi) / c = 0.6706 users / hour
λmax =λ + 2 SQRT(λ) = 2.308 users/hour

U-T

λ = (Σc λi) / c = 0.5245 users / hour
λmax =λ + 2 SQRT(λ) = 1.973 users/hour

The average time in the system over all the
weeks was also calculated:
U-M: 1/µ = 18.86 hours
U-T: 1/µ = 11.588 hours

Thus,
U-M: E = λmax/µ = 43.53 sessions
U-T: E = λmax/µ = 22.86 sessions

If we then calculate the peak number of sessions
with ½% GOS using the Erlang-B Loss Formula
[22, p. 273], Emax = 59 sessions for U-M and
Emax=36 for U-T.

To measure the ability of this method to utilize
information from preceding weeks to predict the
peak number of jobs and unique users for a
week, the logs from both U-M and U-T were
used to successively predict these values. This
approach is called themoving averages
approach in [27] and is used for forecasting
demand in telecommunications circuits. After the
first few weeks, the technique was fairly
successful in predicting appropriate values to
satisfy all of the requests for that week measured
from the historical logs. Figure 4 shows that the
peak number of jobs calculated compared with
the actual peak number of jobs measured per
week. The predicted peak value of 59 exceeds all
of the measured values, and should be able to
provide a ½% GOS over all weeks.

DRAFT 9

Figure 4: Peak vs. Predicted Number of Jobs per Week

The data table in Figure 4 contains the median,
interquartile range, and the 95% confidence
interval of the median for the actual and
predicted peak number of jobs per week for U-M
and U-T. The ability to calculate the predicted
peak number of jobs based upon the average
arrival rate and time in the system is useful for
allowing system managers to provision the
system for a known peak number of jobs.

5.3 Adding a Grace Period to the Binding
The results presented in the previous section is
for the scenario in which jobs arrive, are
temporarily bound to an account template, and
the binding between the user and the template
account lasts only as long as the job is in the
system. In practice, however, immediately
breaking the binding is undesirable for the user
and for the system. If a user frequently returns to
the system, the aggregate overhead of setting up
and tearing down account bindings would be
excessive. From the user’s point of view, it
would be desirable to have a period of time (a

“grace period”) after the completion of the jobs
to be able to collect or analyze the output of the
execution. If we introduce a grace period of any
significant length to the system, however, some
changes must be made to the predictive model to
take into account the effects of the user revisiting
the account, which in effect extends the time the
account binding is in the system. If we introduce
a uniform grace period G that is selected by the
systems manager, the average holding time for
each job 1/µ will be extended to (1/µ) + G, and
the corresponding weekly 1/µi and aggregate 1/µ
will also be extended by G. The arrival rate of
the offered jobs to the systemλi would remain
unchanged, and the peak predicted number of
jobs would also be scaled appropriately for G.
To verify this result, the University of Michigan
and University of Texas logs were analyzed to
determine the peak number of jobs in the system
over all the weeks in the logs for a given grace
period G. Figure 5 show the predicted vs. actual
peak number of jobs for a set of grace periods
from 0 to 15 days for University of Michigan
and University of Texas.

Median IQR 95% CI of Median
UM Actual 17 11.750 16.000 to 22.000

UM Predicted 45.5 33.000 32.000 to 61.000

UT Actual 4 3.000 2.000 to 5.000

UT Predicted 9 4.000 7.000 to 11.000

Actual vs. Predicted Peak Number of Jobs per Week

0

10

20

30

40

50

60

70

80

UM Actual UM Predicted UT Actual UT Predicted

N
um

be
r

of
Jo

bs

DRAFT 10

Predicted Peak Number of Jobs vs. Distribution of Actual
Jobs for a Grace Period for U-M Data

-100

100

300

500

700

900

1100

1300

1500

Grace 0 Grace 1H Grace 5H Grace
24H

Grace
48H

Grace 5D Grace
10D

Grace
15D

Grace Period in Hours (H) and Days (D)

N
um

be
r

of
Jo

bs

Max Predicted Median Predicted

Figure 5.1: Predicted Peak Number of Jobs vs. Actual Peak Number of Jobs for U-M

Predicted Peak Number of Jobs vs. Distribution of Actual Jobs for
a Grace Period for U-T Data

-100

100

300

500

700

900

1100

1300

Grace 0 Grace 5H Grace 1H Grace
24H

Grace
48H

Grace 5D Grace
10D

Grace
15D

Grace Period in Hours (H) and Days (D)

N
um

be
r

of
Jo

bs

Max Predicted Median Predicted

n
Max

Predicted
Median

Predicted
Median
Actual

IQR
Actual

95% CI of Median
Actual

Grace 0 44 69 46 17 11.750 16.000 to 22.000
Grace 1H 44 73 49 22 10.250 20.000 to 26.000
Grace 5H 44 83 62 27.5 21.250 23.000 to 33.000

Grace 24H 44 136 123 43 40.250 36.000 to 56.000
Grace 48H 44 235 194 62 58.500 48.000 to 87.000

Grace 5D 44 526 405 100.5 96.750 81.000 to 136.000
Grace 10D 44 1004 753 100.5 96.750 81.000 to 136.000
Grace 15D 44 1480 1097 247 205.500 193.000 to 341.000

DRAFT 11

Figure 5.2: Predicted Peak Number of Jobs vs. Actual Peak Number of Jobs for U-T

This analysis demonstrates that the model
remains valid when an additional grace period is
introduced.

5.4 Predicting the Number of Unique Users
in the Job Stream

At the busy period during the week, if the actual
peak number of jobs is M, the situation is as
follows:

Job 1

Job 2

.

.

.

.

.

Job M

User a

User b

.

.

.

.

.

User X

.

.

.

t0 t1

Assuming that jobs start at t0 and complete at or
after t1. For the worst case, one could assume
that each job is assigned to a unique individual
user, and thus would require M template
accounts. In practice, however, the number of
jobs attributable to a user is the product of the
probability of a job originating from that user in
the job stream and M. This is due to the theorem
that a Poisson process can be partitioned into a
set of impendent Poisson processes [22, p. 74].
To apply this theorem, we must determine the
probability of the user being the originator of a
job in the job stream from the historical logs.

Let pi = Probability (useri) = (Number of jobs for
useri / Total Number of Jobs). Thus,
λavg = p1 λavg + p2 λavg + p3 λavg + …+ pk λavg

λmax = p1 λmax + p2 λmax + p3 λmax + …+ pk λmax

where k is the number of users in the historical
logs. Thus,

(1) Emax = 1/µ (p1 λmax + p2 λmax + p3 λmax

 + …+ pk λmax)

and
Eu1 = (p1λmax)/µ , Eu2 = (p2λmax)/µ , Eu3 =
(p3λmax)/µ , ..., Euk = (pkλmax)/µ

The predicted number of unique users at the busy
period will be the number of terms in (1) that
have a values greater than 1.

(2) || U || where U = { Eui : Eui > 1}

We can then add the grace period G described in
the previous section to (1):

Emax = (1/µ + G) (p1 λmax + p2 λmax + p3 λmax

 + …+ pk λmax)

The period of time window used in the historical
job log to calculate the probability for each user
that is used to calculate Emax must be at least 2
(1/µ + G) to capture all possible jobs in the
window. For the most accurate results pi should
be based upon an analysis of the job log as far
back into the past as is practical.

Figure 7 shows the predicted peak number of
individual users per week vs. the actual peak
number of individual users for U-M and U-T.

n
Max

Predicted
Median

Predicted
Median
Actual IQR

95% CI of Median
Actual

Grace 0 27 39 36 11 8.500 8.000 to 16.000

Grace 5H 27 42 38 25 16.000 20.000 to 34.000

Grace 1H 27 54 48 20 9.000 15.000 to 23.000

Grace 24H 27 109 92 34 19.000 28.000 to 44.000

Grace 48H 27 194 147 49 34.000 39.000 to 70.000

Grace 5D 27 455 303 80 40.000 62.000 to 101.000

Grace 10D 27 878 558 138 106.500 121.000 to 208.000

Grace 15D 27 1309 814 203 149.500 161.000 to 307.000

DRAFT 12

Predicted Peak Number of Unique Users vs. Actual Peak Number of
Unique Users for a Grace Period for U-M Data

0

10

20

30

40

50

Grace 0 Grace 1H Grace 5H Grace
24H

Grace
48H

Grace 5D Grace
10D

Grace
15D

Grace Period in Hours (H) and Days (D)

N
um

be
r

of
U

ni
qu

e
U

se
rs

Median Predicted Max Predicted

Figure 6.1: Predicted Peak Number of Users vs. Actual Peak Number of Users for U-M

Predicted Peak Number of Unique Users vs. Actual Number of U nique
Users for a Grace Period for U-T Data

0

5

10

15

20

25

30

35

40

Grace 0 Grace 1H Grace 5H Grace 24H Grace 48H Grace 5D Grace 10D Grace 15D

Grace Period in Hours (H) and Days (D)

N
um

be
r

of
U

ni
qu

e
U

se
rs

Max Predicted Median Predicted

n
Max

Predicted
Mean

Predicted
Median
Actual IQR

95% CI of Median
Actual

Grace 0 44 20 14 5.000 1.000 5.000 to 6.000

Grace 1H 44 20 14 6.000 2.000 5.000 to 7.000

Grace 5H 44 21 18 6.000 2.000 5.000 to 7.000

Grace 24H 44 27 23 7.000 3.000 7.000 to 8.000

Grace 48H 44 30 28 8.000 3.250 8.000 to 9.000

Grace 5D 44 37 32 10.000 4.000 9.000 to 11.000

Grace 10D 44 41 37 12.500 4.000 12.000 to 14.000

Grace 15D 44 51 41 14.500 3.750 14.000 to 16.000

DRAFT 13

Figure 6.2: Predicted Peak Number of Users vs. Actual Peak Number of Users for U-T

It can be demonstrated that as the grace period G
approaches infinity, the maximum number of
users calculated from the probability vector
approaches the number of individual users that
utilized the system. This corresponds to the firm
binding case, where over a very long period of
time, the number of users that use the system
matches the number of users contained within
the password file on the system.
With the addition of the probability of individual
users using the system, system managers can
then confidently provision the system for a
known peak number of users based upon the
historical use information of the system.

5.5 Application: Using Theory to Determine
Grace Period and Number of Template
Accounts

Now that we can accurately predict an upper
bound on the number of template accounts and
individual users a Grid resource site would
service given the historical logs, GOS, and grace
period, we now want to be able to easily
calculate the number of template accounts a site
would need to support a GOS and grace period
selected by the site administrator. The process to
do this is as follows: first, calculate average
holding time 1/µ by calculating the arithmetic
mean of the time in hours in the system for all
jobs over a certain filter threshold (to filter out
unsuccessful jobs); second, calculate arrival rate
λ by dividing the total number of filtered jobs in
the log by the number of hours the log covers;
third, calculate the user probability vectorp by
taking the inverse of the number of times a jos
comes from a particular user (for example, if
user X has 10 jobs, Prob(X) = 1/10). Now,
calculateλmax = λ + 2*SQRT(λ), and calculate
E = λmax/µ. If you have a package to calculate
the Erlang Loss Formula, such as Qsim for Excel
[25], or a Java applet [26], you can use E and a
selected GOS as inputs to calculate Emax, and

calculate the peak number of users by the
number of elements of the vectoru = pEmax that
are greater than one. This will give you the peak
number of users that will utilize the system with
a known probability of blocking a job due to a
depletion of template accounts.

For example, from the University of Michigan
data, λmax = 2.308 users/hour, 1/µ = 18.86
hours, and Emax = 43.53. With user probability
vector p calculated from the logs, and a desired
GOS of 20% blocked jobs, U-M should
provision 9 template accounts. If the GOS is
increased to 1% blocked jobs, the required
number of template accounts rises to 15
accounts. Since the difference between 9 and 15
accounts is small, U-M may decide that the small
additional cost of providing 6 accounts to greatly
improve the GOS is justified. If a grace period of
40 days is added to 1/µ for a value of 978.86
hours, Emax now has the value of 2339 and
using p the peak number of template accounts
required to support a GOS of 1% is 61.

5. 6 Summary
In this section, it was demonstrated that
historical log information maintained on the
system can be used to quickly and simply
calculate the peak number of jobs and users that
may utilize the system. As Grid technology
progresses and the mix of jobs offered to Grid
systems comes more frequently from automated
processes, the self-similar arrival processes
described by Paxson [23] will become a more
significant factor and should be taken into
account for future models. Another area of work
is the prediction of peak job and users for jointly
scheduled systems, such as the Berkeley
Millennium [24] system, Globus, and the U-
M/U-T NPACI Grid.

n
Max

Predicted
Median

Predicted
Median
Actual IQR

95% CI of Median
Actual

Grace 0 27 11 8 4 1.500 4.000 to 5.000

Grace 1H 27 12 9 5 2.000 4.000 to 6.000

Grace 5H 27 14 11 5 1.500 5.000 to 6.000

Grace 24H 27 20 18 6 2.000 5.000 to 7.000

Grace 5D 27 25 20 7 2.000 6.000 to 8.000

Grace 48H 27 33 23 9 2.500 9.000 to 10.000

Grace 10D 27 36 25 12 3.500 11.000 to 13.000

Grace 15D 27 37 27 14 4.500 11.000 to 15.000

DRAFT 14

6 Application : The Visible Human Project

The Visible Human Project (VHP) at the
University of Michigan sponsored by the
National Institutes of Health [31, 41] is
attempting to create a Next Generation Internet
production system to serve v
isible human datasets to learning systems at
medical training facilities throughout the United
States. The VHP has developed an anatomical
dataset navigation tool called Edgewarp [32, 33]
that will require significant high performance
computation and storage resources to render and
deliver real-time flythrough images of anatomic
data sets under haptic controls. Design
parameters for the VHP requires support for at
least 40 simultaneous users in a teaching clinic at
a site for Nursing, Medical and Dental students.

For the VHP to be able to successfully support a
large computational load with a transient pool of
users, the account template mechanism is critical
to allow the VHP software to convey a student’s
X.509 certificate from an entity such as a smart
card to a Grid resource site that is willing to
provide computational or storage resources for
the student’s use of the system. If each Grid
resource provider is required to establish an
account for each student before the term, and
then remove the account at the end of the term,
the administrative overhead and costs associated

with this activity would be so large that very few
sites would be able to participate.

BRIAN – ADD MORE HERE.

7 Conclusion and Future Work

In this paper, an alternative to existing account
allocation techniques was presented that
addressed the problems of identity, persistence
and accountability present in these systems. A
practical technique for predicting an upper bound
on the number of jobs and users that is based on
historical use was presented. Analysis of this
technique using log data from two different
resource sites was presented that demonstrated
the success of the technique. Finally, application
of the account allocation mechanism presented in
this paper was described.

For future work, investigation of the effect of
self-similar arrival processes on this model
should be done. Another area for future work is
an thorough investigation of the effects of
temporary account bindings on Operating
Systems design, and investigation of what
changes would be required on a UNIX system to
support temporary account bindings.

DRAFT 15

REFERENCES

[1] Humphrey, Marty and Thompson, Mary.
Security Implications of Typical Grid
Computing Usage Scenarios. Grid Forum
Security Working Group Draft. October 2000.

[2] Thompson, M., Johnston, W., Mudumbai, S.,
Hoo, G., Jackson, K., Essiari, A. Certificate-
based Access Control for Widely Distributed
Resources. Proceedings of the Eighth Usenix
Security Symposium, Aug. `99.

[3] Smith, W., Gunter, D. A Grid Information
Service Schema for Grid Events. Grid Forum GP
working group draft. October 2000.

[4] Dyer, Stephen P., "The Hesiod Name
Server," USENIX Technical Conference, Dallas,
Texas, Winter 1988.

[5] Steiner, Neuman, Schiller, Kerberos: An
Authentication Service for Open Network
Systems, USENIX Technical Conference,
Dallas, Texas, Winter 1988.

[6] R. Housley, W. Ford, W. Polk, D. RFC 2459
Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. January 1999

[10] D. H. J Epema, Miron Livny, R. van
Dantzig, X. Evers, and Jim Pruyne, "A
Worldwide Flock of Condors : Load Sharing
among Workstation Clusters"

Journal on Future Generations of Computer
Systems Volume 12, 1996

[11] The Network Desktop of the Purdue
University Network Computing Hubs. Nirav H.
Kapadia and

Jose' A. B. Fortes. Technical Report TR-
ECE-99-1, School of Electrical and Computer
Engineering, Purdue University. January 1999.

[12] PUNCH: An Architecture for Web-Enabled
Wide-Area Network-Computing. Nirav H.
Kapadia

and Jose' A. B. Fortes. Cluster Computing:
The Journal of Networks, Software Tools and
Applications; special issue on High Performance
Distributed Computing. September 1999.

[13] Doster , B., Rees, J. Third-Party
Authentication for the Institutional File System.
University of Michigan Center for Information

Technology Integration Technical Report 92-1.
http://www.citi.umich.edu/techreports/citi-tr-92-
1.ps.gz.

[14] AFS for Windows. Transarc Corporation.
http://www.transarc.ibm.com/Library/documenta
tion/afs/3.5.windows.

[15] Howard, J. H., Kazar, M. L., et. al. “Scale
and Performance in a Distributed File System,”
ACM Transactions on Computer Systems,
6(1):51-81, 1988.

[16] Kazar, Michael Lean, Leverett et al.,
“Decorum File Systems Architectural
Overview,” USENIX Conference Proceedings,
USENIX Association, Berkeley, CA, Anaheim
June 1990.

[17] Nelson, M. L.; Priest, T. L., and Bianco, D.
J.: “Experiences with DCE/DFS in a Production
Workstation Cluster Environment,” NASA TM
(in preparation) working version at:
http://www.larc.nasa.gov/~mln/dfs/dfs.html.

[18] Foster, I. and Kesselman, C. Globus: A
Metacomputing Infrastructure Toolkit,
International Journal of Supercomputing
Applications, 11(2): 115-128, 1997.
http://www.globus.org.

[19] UNIX System Laboratories. STREAMS
Modules and Drivers, Prentice-Hall, 1992.

[20] Hacker, T. Thigpen, W. Distributed
Accounting on the Grid. Grid Forum Working
Draft.

[21] Buyya, R., Abramson, D., Giddy, J. “An
Economy Grid Architecture for Service-Oriented
Grid Computing”. Pre-publication work in
progress.

[22] Wolff, R. Stochastic Modeling and the
Theory of Queues. Prentice Hall, 1989.

[23] V. Paxson and S. Floyd, "Wide-area Traffic:
The Failure of Poisson Modeling," IEEE/ACM
Transactions on Networking, pp.226-244, June
1995.

[24] University of California, Berkeley. UC
Berkeley Millenium Project, 1997.
http://www.millennium.berkeley.edu.

DRAFT 16

[25] 3 Point Technologies, Inc. Qsim Modeling
Functions for Excel.
http://www.3ptech.com/qsim.

[26] S. Qiao and L. Qiao, A Robust and Efficient
Algorithm for Evaluating Erlang B Formula,
Technical Report CAS98-03, Department of
Computing and Software, McMaster University,
Ontario, Canada, L8S 4L7, August
1998.http://www.cas.mcmaster.ca/~qiao/publicat
ions/erlang/newerlang.html

[27] Green, James H. The Irwin Handbook of
Telecommunications Management. Irwin
Professional Publishing, 1996.

[28] Intel Support Document #8150. A Traffic
Engineering Model for LAN Video
Conferencing.
http://support.intel.com/support/proshare/8150.ht
m.

[29] Foster, I., and Kesselman, C. (editors), The
Grid: Blueprint for a New Computing
Infrastructure, Morgan Kauffman Publishers,
1999.

[30] William E. Johnson, Dennis Gannon, and
Bill Nitzberg. Grids as production computing
environments: The engineering aspects of
NASA's information power grid. In Eighth IEEE
International Symposium on High Performance
Distributed Computing. IEEE, August 1999.

[31] University of Michigan Visible Human
Project.http://vhp.med.umich.edu.

[32] Bookstein, F.L. and Green, W.D.K.
Edgewarp 3D: A Preliminary Manual. Posted to
the Internet asftp://brainmap.med.umich.edu/
pub/edgewarp3.1/manual.html, 1998.

[33] B. D. Athey, A. W. Wetzel, and W. D. K.
Green. Navigating solid medical images by
pencils of sectioning planes. Pp. 63--76 in
Mathematical Modeling, Estimation, and
Imaging, eds. D. Wilson, H. Tagare, F.
Bookstein, F. Preteaux, and E. Dougherty, Proc.
SPIE, vol. 4121, 2000.

[34] Schopf, J, Nitzberg, B. Grid: The Top Ten
Questions. Northwestern University CS
Technical Reports #CS-00-05.

[35] Personal Communications with Victor
Hazlewood, HPC Systems Manger, San Diego

Supercomputer Center.
http://www.sdsc.edu/~victor.

[36] Foster, I., Kesselman, C., Tsudik, G.,
Tuecke, S. “A Security Architecture for
Computational Grids.” Proceedings of the Fifth
ACM Conference on Computer and
Communication Security.

[37] Dobbins, G. ND_GINA: An Alternative
Authentication Method from Windows NT.
Technical Report. http://www.nd.edu/~dobbins/
ntarch/nd_gina_doc.html

[39] Scott Jackson, QBank: A Resource
Management Package for Parallel Computers.
Pacific Northwest National Laboratory, USA,
2000.

[40] Alanyali, M. and Hajek, B. (1996), “On
Load Balancing in Erlang Networks”, Stochastic
Networks: Theory and Applications, F. P. Kelly,
S. Zachary, and I. Ziedens (Eds.), Oxford
University Press.

[41] M. J. Ackerman, “The Visible Human
Project,” J. Biocomm., vol. 18, p 14, 1991.

